
An Intelligent Information Systems Architecture for
Clinical Decision Support on the Internet

K. Canfield PhD, V. Ramesh PhD, S. Quirolgico MS, M. Silva MS
Laboratory for Healthcare Informatics, Department of Information Systems

University of Maryland, UMBC
Baltimore MD

This paper presents a prototype of an agent-based
intelligent information systems architecture that can
provide clinical decision support in a distributed,
heterogeneous environment such as the Internet.
After presenting the architecture, a specific
transaction sequence is detailed and implemented to
test the architecture. A transaction sequence is a
detailed analysis of all actions by all entities to
accomplish the system goal. In this case, the goal
is to give decision support information access to a
provider in the context of a computerized patient
record. Based on the results of the prototype
implementation, we argue that the system is
scaleable and discuss other transactions, standards,
and needed development.

INTRODUCTION

As Computerized Patient Records (CPRs) become
more numerous at various health care centers and
Internet information resources become richer, it seems
clear that the two will be used together. Currently,
this connection requires a large investment of time
and expertise by health care providers. For example,
if a provider is browsing a CPR and a question
occurs to her that could be answered with Web
resource, she must open a Web browser application
and perform a (perhaps tedious) search for relevant
information resources. In the context of today's busy
managed care environment, this information seeking
will probably not happen frequently. This paper
describes the implementation and testing of a
prototype information systems architecture for
automating the scenario above. The prototype shows
plausible time savings for providers who need such
information. Furthermore, this architecture is shown
to plausibly support much more complex transactions
that are important to the futre of heath care
computing.

We use a design, build, and test methodology here
[1]. This paper has three major objectives:

1. Specify the architecture to support
distributed information systems for health care and
build a prototype of it. (Design and Build)

0195-4210/96/$5.00 0 1996 AMIA, Inc.

2. Specify in detail a sample transaction that
will take place in this architecture and test it on the
prototype. (Test)

3. Argue from these results that the architecture
is scaleable and discuss other transations, standards,
and development that are needed.

The architecture discussed here is agent-based in that
there are processes running on various machines on
the Internet that offer services such as resource
finding, resource caching, and other coordination and
control functions. The specific kind of agents used
here are KQML-based (Knowledge Query and
Manipulation Language) agents [2]. The remainder
of this paper introduces KQML, presents the
architecture and prototype, details the transaction
sequence, and discusses scaleability. It is important
to note that the proposed architecture is based on
open standards for services and not global ownership
ofthe system.

KQML

The Internet is a highly distributed and
heterogeneous environment. The client/server model
currently used on the Internet does not offer easy
support of "middleware" processes for information
finding, manipulation, and translation between the
clients and the servers. Agents (here defined) are
processes that exist on the Internet to provide these
and similar services. KQML is a language that
supports communications between these agents.
Many KQML papers and other information are
available at http://www.cs.umbc.edu/kqml.

KQML is a layered, asynchronous agent
communication language (ACL) that is supported on
most important transport protocols, such as tcp/ip
and http. It is layered in the sense that it has a flame
structure. For example, a message that contains a
query to a UMLS-based vocabulary server [3] is:

175

(ask-one
:content (Select CUI from MRCON

where SUI="short of breath";)
:receiver umls-vocab-server
:language SQL
:ontology UMLS Net)

The "ask" line of the message is the performative. A
set of perfornatives form the core of the language
because they defne the high-level interactions
between agents. KQML performatives include: ask-
one, ask-all, tell, subscribe, advertise, and next. The
":content" is a string from the specified ":language"
that will be evaluated on the ":receiver" (server)
using the ":ontology." In this case, the KQML
agent gives a SQL string to a relational database
server that contains UMLS tables with data
conforming to the UMLS Semantic Net ontology.

Some KQML agents perform services for people and
processes in organizations and other agents perforn
services for other agents. This later type of agent is
caled a facilitator. Facilitators perform services such
as forwarding, brokering, recruiting, and content-
based routing. For example, figure 1 shows that
agent A has subscribed to agent F to monitor for the
truth of x. When agent B tells F that x is true, F
informs A.

- - .,..*,B(x)
1%,b

s-
m I

subscrisb(k(x))
0

Figure 1. ACL (adapted from [2]).

IfKQML were standardized for use on the Internet (or
some other practical ACL), a truly distributed
mediator architecture could develop without any
global control of the information resources. A
specific example of such an architecture is developed
below.

ARCHITECTURE

The architecture developed here depends on a CPR
that keeps a current active problem list, KQML
speaking agents, specific knowledge sources on the
Internet, and access to a Web browser. These
prerequisites, with the exception ofKQML speaking
agents, are currently common in many health cae
environments. These agents, sometimes refered to
as "intelligent" agents, can be built with arbitrary
amounts of intelligence. The prototype described
here uses rather "stupid" agents, but obtains an
arguably large gain in information seeking efficiency.
In a developed community of agents environment, the

incentives for developing agents with more
sophisticated services would increase. Our prototype
architecture is shown schematically in figure 2.

Figure 2. The Internet Agent Architecture

All entities in figure 2 have associated agents. The
CPR is assumed to be on a network and able to
communicate with the Enterprise Agent (Eagent) that
is also running on some machine in the enterprise.
This agent will keep track of things in its scope df
responsibility for all patients and providers in the
enterprise (say hospital or managed care
organization). The Facilitator agent serves as a name
server where agents can go to find available servers.
The UMLS server consists of a KQML speaking
agent connected to a relational database that contains
(a subset of) the UMLS Metathesaurus. The ISM
server consists of a KQML speaking agent connected
to a relational database that contains (a subset and
extension of) the UMLS Information Sources Map.
The Web is merely an abstraction of all the relevant
Web pages out there on the Internet. The next
section details a specific transaction in this
architecture.

We have implemented this architecure. The CPR
(MSWindows application front-end) is currently used
in a Geriatrics clinic and we have also developed a
Java browser-based CPR interface. The KQML
agents are written in C and are connected to Postgres
object-relational databases (This is the UC Berkeley
database project's object extension of Ingres which is
freely available). This is a form of a federated system
architecture where the KQML-speaking agents
communicate with each other, but can execute any
local programs. The UMLS and ISM datbase
entities are minimally populated for this prototype.
A real implementation would require fully developed
Internet implementations ofthese entities.

176

v
f

0

- - - lQ(x)

TRANSACTION SEQUENCE

This transaction sequence is a fully specified use case
for the proposed architecture. There are many
possible such transactions. The one developed here
is based on the following narrative description. The
parenthetical words refer to figure 2.

A provider is browsing a patient record. The CPR
provides for storing a current active problem list fcr
each patient. Furthermore, every order that the
provider makes can be linked to a current problem.
Figure 3 shows such a dialog box interface where the
provider can add and delete from the problem list. A
personal (for the provider) agent process (CPR) on
the provider's computer monitors the additions and
deletions from the problem list and reports them to
the enterprise agent (EAgent). In this case, the
provider has added a problem to the list for a patient.
The EAgent contacts the agent name server
(Facilitator) to find the current names for the UMLS
and ISM servers.

The EAgent then contacts the UMLS agent to ask for
the canonical term for the added problem (it passes a
string for a database select). Then, the EAgent asks
the ISM agent for a list ofURLs corresponding to the
canonical form of the problem. The EAgent then
edits a custom Web page for that provider/patient and
adds the URLs for the new problem. At any point,
the provider can request (from a menu) this
information from the CPR. The Web browser will
be launched and display the cached URLs as that
custom Web page. The provider can then pursue the
links that are sorted by problem. A similar
transaction can be specified for deleting a problem.

The transaction sequence associated with this
narrative is graphically shown in figure 4. The
entities are shown across the top with the sequence of
interactions vertically on the left side.

This transaction sequence has been implemented on
the architecture. All agents and information resources
perform as designed. The loop in step 5 of the
sequence represents the fact that the action is
performed without contacting any other agents.

CPR EAgentFacil UMLS ISM WebSite

1. AddProblm

2. LookapAgents -4
I3. FindTerm

4. FindURL .

5.EditHTML
5. LauchBmwser * ! ! !

Figure 4. The Transaction Diagram.

DISCUSSION

The local agents described for this prototype project
fall into the category of personal assistants [4].
Another example of an open architecture for these type
of agents is Envoy [5] developed at Brown
University. These are geared to the local area rather
than the Internet. A similar architecture for a
federated system of agents is described in Genesereth
and Ketchpel from Stanford [6].

The scaleability of this kind of architecture is
conceptually very good because it is open, simple,
and uses existing resources with a minimum ef
adaptation. The devil, as always, is in the details.
For this prototype project, we used minimally
populated information resources because the real ones
do not exist. There develops a "catch 22" here
where the architecture is not developed because there
are no appropriate resources and there are no resources
because the architecture is not there. A plausible
scenario of success is for the networking community
to standardize on an ACL such as KQML to
stimulate the adaptation of existing resources to the
agent architecture.

There are many other beneficial transactions that
could take place in this architecture. For example,
assuming a transaction monitor at every CPR site, an
agent could monitor every order or observation for
linkage to a problem and forward the data to
appropriate repositories. Since these agents keep
track of where the data comes from, negotiation
protocols can be developed for automatic data quality
control and follow-up. Very large repositories ofhigh
quality data could be developed in this way for
outcomes research and epidemiology. This ignores
very difficult privacy issues that would need to be
solved. The simple decision support scenario used
here could also be expanded to include a system cf

177

guideline servers that were required by difft
payers. In this way, providers could be easily aware
of payer required treatment guidelines (which could
be over-ridden and documented by provider judgment
if clinically inappropriate). AHCPR currently
publishes many guidelines as Web pages. Finally,
updating the UMLS Metathesaurus could be semi-
automated as a side efifct of the canonical term
lookup step in the detailed transaction. If a string
could not be found, an agent could send a structured
email to the responsible provider and request further
information. If a term was discovered to be missing
from the UMLS, a review procedure would get it
added at some point.

The benefits of this architecture are increased
efficiency for expensive health care workers and also
increased information flow. The very simple agents
developed for this project promise real time savings
for providers and researchers. One future benefit ofthe
architecture is that for small health care sites, the
CPR could be offered as a remote service over the
Internet. The interface could operate like the Java
user interface developed for this project. Providers
would contract for the interface and other value-added
services supplied by agents. No expensive support
operations for an on-site information system would be
needed. This also assumes appropriate
confidentiality and security.

The information resources are the core of the
functionality and the rationale for the system cf
agents. The explosive growth of the Web on the
Internet has stimulated the development of networked
information resources, and these resources can be
adapted to use the agent architecture. The agent layer
will allow us to more efficiently use these resources
as they grow in number and complexity. The agents
described here are very simple and static. We can
conceive of agents that have much more knowledge
and can be configured by users and/or administrators.
Finally, the structure of database processing is
becoming much more distributed at the local level.

As they adopt a 3-tier client/server architecture that
includes a transaction monitor, they reflect the same
structure as this agent architecture [7]. The middle
layer becomes the perfect place for agents to live.

CONCLUSIONS

This paper has presented an architecture for a
community of agents on the Internet. This
intelligent information system increases access to
Internet information resources while reducing the
clerical and search tasks of the users. A prototype
system has been implemented and successfillly tested
using a specific ransaction sequence for clinical
decision support. This prototype shows qualities of
scaleability and extenseability.

References

1.Nunamaker, J., Build and Learn, Evaluate and
Learn, Informatica, 1992, 1(1), p. 1-12.

2. Finin, T., R. Fritzson, D. McKay, R. McEntire,
KQML as an Agent Communication Language. in
proceedings of Conference on Information and
Knowledge Management. 1994. Baltimore MD:
ACM Press.

3.NLM, UMLS Knowledge Sources: 7th
Experimental Edition 1996, NIH/National Library
ofMedicine.

4. Maes, P., Agents that Reduce Work and
Information Overload. CACM, 1994. 37(7): p. 31-
47.

5. Palaniappan, M., N. Yankelovich, G. Fitzmaurice,
et al., The envoyframework: An open architecture
for agents. ACM Trans. Info Sys, 1992. 10(3): p.
233-264.

6. Genesereth, M. and S. Ketchpel, Software Agents.
CACM, 1994. 37(7): p. 48-53.

7. Canfield, K., Clinical resource auditing and
decision support for computerized patient record
systems: A mediated architecture approach.
Journal of Medical Systems, 1994. 18(3): p. 155-
166.

178

